FREEZING POINT OF PHENYL SALICYLATE (\#5.2)

The CCLI Initiative
Computers in Chemistry Laboratory Instruction

Learning Objectives

The objectives of this experiment are to...

- demonstrate the general features of a cooling curve.
- measure the freezing point of a compound.

Background
In this experiment students will measure the freezing point of an organic compound, phenyl salicylate. A sample of the compound, which is a solid at room temperature, will be warmed until it melts and the temperature of the liquid is well above its freezing point. The sample then will be cooled and stirred, and its temperature monitored with a temperature probe. A graph of temperature versus time (called a cooling curve) will be made.
Temperature probe calibration
The temperature probe will be calibrated at a minimum of three temperatures from near freezing to around $80^{\circ} \mathrm{C}$.
Setting up the apparatus
The apparatus for this experiment is shown in Figure 2. This allows a clear view of the phenyl salicylate, and controlled loss of heat for accurate measurement of the freezing point.

Running the experiment
The experiment should be repeated several times in order to get an average freezing point for the most accurate results.

Data Analysis

Guidance is given in interpreting the results.

Instructor Resources Provided

1. Sample Report Sheets providing the format to organize the data collection with sample data.
2. Questions to consider, answer and turn-in with suggested answers.
3. Tips and Traps section to assist the instructor with potential problems and

Figure 2. Set up for measuring the freezing point of phenyl salicylate. NOTE: Students may be using a temperature probe other than a thermistor. solutions.
4. Sample MicroLAB screen shots and graphs.
5. Laboratory preparation per student station.

Figure 2. Sample MicroLAB cooling curve.
www.microlabinfo.com
P.O. Box 7358
email: info@microlabinfo.com
Bozeman, MT
(888) 5863274

59771-7358

