Electrochemistry: Galvanic Cells and the Nernst Equation

INSTRUCTOR RESOURCES

The CCLI Initiative

Learning Objectives

- construct galvanic cells and develop an electrochemical series based on potential differences between half-cells.
- understand the Nernst Equation.

Procedure Overview

- an electrochemical series is determined with reference to Sn. The half cells constructed are: Sn (s)/SnCl₂; Nichrome/FeSO₄, Fe(NO₃)₃; Cu (s)/Cu(NO₃)₂, and Zn (s)/ZnSO₄.
- the Nernst Equation is explored using different concentrations of copper sulfate solution and 1 M solution of zinc sulfate. A graph of voltage vs. log([Cu2+]) is plotted and used to determine concentration of an unknown copper solution.

Name _____ Section ____ Date _____

ELECTROCHEMISTRY: GALVANIC CELLS AND THE NERNST EQUATION

Report Sheet

Part I: Galvanic cells and the electrochemical series

Voltage Readings

Sample #	Red: Metal	Black: Metal	Voltage(mV)
1			
1			
2			
3			
4			
5			
6			

Electrochemical Series Table

Half-reaction

Cell voltage compared to Sn²⁺/Sn half-cell (mV)

Report Sheet (page 2)

Part II: The Nernst Equation

Cell #	[Cu ²⁺]	$[Zn^{2+}]$	$\mathrm{E}_{_{\mathrm{cell}}}$ observed	E_{cell} calculated
1	1.0	1.0		
1	1.0	1.0		
2	0.10	1.0		
3	0.010	1.0		
4	0.0010	1.0		
5	0.00010	1.0		
Unknown		1.0		N/A

Name _____ Section ____ Date _____

ELECTROCHEMISTRY: GALVANIC CELLS AND THE NERNST EQUATION

Questions/Problems

- According to your Electrochemical Series Table, which half-cell reaction has the greatest tendency 1. toward reduction (to gain electrons)?
- 2. Which half-cell has the greatest tendency toward oxidation?
- Based on your Electrochemical Series Table, what would you predict for the voltage of a copper/zinc 3. cell? How does the measured voltage of this cell compare with your prediction? Show your calculations.
- What would you predict for the voltage of Cu/Fe and Fe/Zn cells? Compare the observed voltages with 4. your calculated values. Show your calculations.
- In Part II of your experiment, how do your values for $E_{cell (observed)}$ and $E_{cell (calculated)}$ compare? If they 5. differ significantly, can you offer any explanation for the differences? Provide the equation used to calculate Ecell_(calculated).

Name _____ Section ____ Date _____

ELECTROCHEMISTRY: GALVANIC CELLS AND THE NERNST EQUATION

Questions/Problems (page 2)

Using the following Standard Reduction Potential Table: 6. Half-cell (volts)

$Ag^{\scriptscriptstyle +}$	+	e-	\Leftrightarrow	$Ag_{(s)}$	+	0.80 V
$\mathrm{Cr}^{^{3+}}$	+	3 e-	\Leftrightarrow	Cr _(s)	+	0.74 V

consider a galvanic cell consisting of the Ag⁺ (1 M) / Ag and the Cr³⁺ (1 M) / Cr half-cells.

- a. Which half-cell undergoes reduction?
- b. Write an equation for the reaction that occurs at the anode and the reaction that occurs at the cathode.
- c. What is the cell potential, E_{cell} , for the galvanic cell?

Use the Nernst Equation to determine the cell potential, E_{cell} , of the galvanic cell consisting of the two 7. half-cells:

 $Ag^+(0.0010 M) + e^- \iff Ag_{(s)}$ $Cr^{3+}(0.1 M) + 3 e \leftrightarrow Cr_{(s)}$

Suggested Answers to Questions/Problems

1. According to your Electrochemical Series Table, which half-cell reaction has the greatest tendency toward reduction (to gain electrons)?

The Fe^{3+}/Fe^{2+} half cell reaction.

2. Which half-cell has the greatest tendency toward oxidation?

The Zn^{2+}/Zn (s) half cell reaction.

3. Based on your Electrochemical Series Table, what would you predict for the voltage of a copper/zinc cell? How does the *measured* voltage of this cell compare with your prediction? Show your calculations.

614 mV + (+300 mV) = 914 mVThe measured voltage was 1050 mV, thus the calculated voltage is lower than the measured voltage by 146 mV.

4. What would you predict for the voltage of Cu/Fe and Fe/Zn cells? Compare the observed voltages with your calculated values. Show your calculations.

Cu/Fe: 960 mV + (614 mV) = 346 mVThe observed voltage is lower than the calculated voltage by 16 mV.

Fe/Zn: 960 mV + (+300 mV) = 1260 mVThe observed voltage is higher than the calculated voltage by 40 mV.

5. In Part II of your experiment, how do your values for $E_{cell (observed)}$ and $E_{cell (calculated)}$ compare? If they differ significantly, can you offer any explanation for the differences? Provide the equation used to calculate cell (calculated).

 $E_{cell} = 1.1 V (0.0591/2) log([Zn^{2+}]/[Cu^{2+}])$ The observed and calculated values are all within 10 mV or less of each other.

Suggested Answers to Questions/Problems (page 2)

6. Using the following Standard Reduction Potential Table:

Half-cell		(volts)
$Ag^+ + e$	\Leftrightarrow Ag	+0.80 V
$Cr^{3+} + 3 e$	\Leftrightarrow Cr	-0.74 V

consider a galvanic cell consisting of the Ag+ (1 M) / Ag and the Cr³⁺ (1 M) / Cr half-cells.

a. Which half-cell undergoes reduction?

Ag+(1 M) / Ag(s)

b. Write an equation for the reaction that occurs at the anode and the reaction that occurs at the cathode.

Anode: $Cr(s) \rightarrow Cr3++3e$ Cathode: $Ag++e \rightarrow Ag(s)$

c. What is the cell potential, E_{cell} , for the galvanic cell?

 $E_{cell} = 0.80 V + 0.74 V = 1.54 V$

- 7. Use the Nernst Equation to determine the cell potential, E_{cell}, of the galvanic cell consisting of the two half-cells:
 - $Ag^{+} (0.0010 M) + e \iff Ag_{(s)} \qquad Cr^{3+} (0.1 M) + 3 e \iff Cr_{(s)}$ $E_{cell} = 1.38 V$

Tips and Traps

Students should avoid handling the filter papers or metal strips with hands. Tweezers should be rinsed and dried between solutions to avoid contamination.

- 2. Copper and zinc strips should be sanded on scratch paper on the desk top to avoid scratching the desk top, and rinsed well.
- 3. Any combination of small containers can be used in place of the Chem Carrou-CellTM.
- Chem Carrou-Cell[™] is available from Freeman, Cooper & Co., San Francisco, CA 94133.

Sample MicroLAB Program for this Experiment

The instructor will need to set up this experiment ahead of time and save it in the **Saved Experiments** folder, or give the students a handout to let them set up the program themselves.

Experiment name: electropot.vs.kbd.experiment

Sensors: **Keyboard** (Metal #): X axis, Col. A, DD on top, units = none; Voltage: Y1 axis, Col B, DD on bottom, units = volts.

Special program: *Read Sensors Repeat upon receiving keyboard input Until Stop Button is pressed*

Comment: The voltage does not need to be recalibrated.

Sample Data

Part I: Galvanic cells and the electrochemical series

Voltage Readings

Sample #	Red: Metal	Black: Metal	Voltage(mV)
1	Cu	Sn	610
2	Zn	Sn	-460
3	Fe	Sn	960
4	Fe	Cu	330
5	Fe	Zn	1300
6	Cu	Zn	1050

Electrochemical Series Table

Half-reaction

Cell voltage compared to Sn²⁺/Sn half-cell (mV)

- $Fe^{3+} + e \iff Fe^{2+}$ 960 mV
- $Cu^{2+} + 2e \iff Cu_{(s)}$ 614 mV
- Sn^{2^+} + 2 e \iff $\operatorname{Sn}_{(s)}$ $0 \, \mathrm{mV}$
- $Zn^{2+} + 2e \iff Zn_{(s)}$ -300 mV

i				
Cell #	[Cu ²⁺]	[Zn ²⁺]	E _{cell} observed	E _{cell} calculated
1	1.0	1.0	1110 mV	1100 mV
2	0.10	1.0	1067 mV	1070 mV
3	0.010	1.0	1035 mV	1041 mV
4	0.0010	1.0	1005 mV	1011 mV
5	0.00010	1.0	984 mV	982 mV
Unknown	0.21	1.0	1082 mV	N/A

Sample Data (page 2)

Simulated *MicroLAB* Main Screen and Nernst Plot from above data.

Part II: The Nernst Equation

Laboratory Preparation (per student station)

Equipment

600 ml beaker
50 ml beaker
tweezers
12 well
one pair of red and black alligator clip leads

Supplies

• filter paper strips sandpaper tile

Chemicals

Exact quantities needed are listed below. A minimum 50% excess is recommended.

- copper metal: six, 5 cm strips
- tin foil: one, 5 cm strip
- nichrome wire: one, 5 cm strip
- zinc metal: two, 5 cm strips
- 5 ml of $1.0 M \text{ Cu}(\text{NO}_3)_2$
- 10 ml of $0.10 M \text{ Cu}(\text{NO}_3)_2$
- 5 ml of $0.010 M \text{ Cu}(\text{NO}_3)_2$
- 5 ml of $0.0010 M \text{ Cu}(\text{NO}_3)_2$
- 5 ml of $0.00010 M \text{ Cu}(\text{NO}_3)_2$
- 10 ml of 0.10 *M* KNO₃
- 5 ml of 0.10 M SnCl₂
- 5 ml of $0.10 M (Fe^{2+}/Fe^{3+})SO_4$ (50/50 mixture)
- 5 ml of $0.10 M \text{ ZnSO}_4$
- 5 ml of $1.0 M ZnSO_4$
- various unknowns $Cu(NO_3)_2$ (0.05 M 0.75 M)

Safety and Disposal

pour waste solutions into specially designated containers