# INSTRUCTOR RESOURCES

#### A CCLI EXPERIMENT

#### **Learning Objectives**

- to understand how a simple calorimeter is used to determine the maximum number of ethylenediamine (en) molecules that will complex to aqueous  $Ni^{2+}$  and  $Cu^{2+}$ .
- to understand the effect of structure of a coordination compound on its reactions.

#### **Procedure Overview**

- the equimolar amounts of  $[Ni(H_2O)_6]^{2+}$  or  $[Cu(H_2O)_6]^{2+}$  and ethylenediamine are reacted and the heat of reaction is determined calorimetrically.
- the reaction mixture is then cooled down to the initial temperature, and a second equivalent of "en" is added. The process is repeated until the addition of the next equivalent of "en" fails to produce a significant temperature change. The small temperature increase observed when further replacement is not possible is due to the heat of dilution of ethylenediamine.
- by measuring the evolved heat, it is possible to determine the maximum number of ethylenediamine molecules that have complexed in each reaction.

| Name | Section | Date |  |
|------|---------|------|--|
|      |         |      |  |
|      |         |      |  |
|      |         |      |  |

## Report Sheet

# Reaction of $[Ni(H_2O)_6]^{2+}$ with ethylenediamine

|                                                                     | Step1                                                 | Step 2 |            | Step 3 | Step 4 |
|---------------------------------------------------------------------|-------------------------------------------------------|--------|------------|--------|--------|
| Initial temperature (°C)                                            |                                                       |        | _          |        |        |
| Final temperature (°C)                                              |                                                       |        | _          |        |        |
| Reaction of [Cu(H2O)6]2+ with                                       | ethylenediamine                                       |        |            |        |        |
|                                                                     | Step1                                                 | Step 2 |            | Step 3 | Step 4 |
| Initial temperature (°C)                                            |                                                       |        | _          |        |        |
| Final temperature (°C)                                              |                                                       |        | _          |        |        |
| Concentration of ethylenediam                                       | ne                                                    |        | _ <i>M</i> |        |        |
| Volume of ethylenediamine in                                        | each step                                             |        | _ ml       |        |        |
| Concentration of [Cu(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> | or [Ni(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> |        | M          |        |        |
| Volume of [Cu(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> or [Ni | $(H_2O)_6]^{2+}$                                      |        | _<br>_ml   |        |        |

| • •  | ~ .     | _    |
|------|---------|------|
| Name | Section | Date |

## Report Sheet (page 2)

#### Calculations

- 1. Calculate the number of moles of ethylenediamine in each 5 ml portion.
- 2. Calculate the number of moles of each metal complex.
- 3. For each step, calculate the heat,  $q_n$ , using 3.8 J/(g °C) and 1.1 g/ml for the specific heat and density of the solution, respectively, and 30 J/ °C for the heat capacity of the calorimeter.

$$q_n = (3.8 \text{ J/g}^{\circ}\text{C}) \text{ x } (1.1 \text{ g/ml}) \text{ x } (\text{ml soln}) \text{ x } (t_i - t_f) + (30 \text{ J/}^{\circ}\text{C}) \text{ x } (t_i - t_f)$$

Provide a sample calculation and record all of your results in the space below.

4. For each step, calculate the enthalpy change,  $\Delta H_n$ , from q and the moles of "en" used in that step. Provide a sample calculation and record your results in the table below.

| Complex                                            | $\Delta \mathbf{H}_1$ | $\Delta H_2$ | $\Delta H_3$ | $\Delta H_4$ |
|----------------------------------------------------|-----------------------|--------------|--------------|--------------|
| [Ni(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> |                       |              |              |              |
| $[\mathbf{Cu(H_2O)_6}]^{2+}$                       |                       |              |              |              |

| Na | me Section Date                                                                                                                                                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | DO Ni <sup>2+</sup> AND Cu <sup>2+</sup> FORM BIS- OR TRIS- COMPLEXES?                                                                                                 |
|    | Questions/Problems                                                                                                                                                     |
| 1. | How many molecules of ethylenediamine react with each molecule of $[Ni(H_2O)_6]^{2^+}$ and with $[Cu(H_2O)_6]^{2^+}$ ? Explain your conclusion.                        |
| 2. | In your experimental trials, how did you conclude that no additional bonding of ethylenediamine to aqueous $[Ni(H_2O)_6]^{2^+}$ and $[Cu(H_2O)_6]^{2^+}$ had occurred? |
| 3. | Which of the two possible complexes of copper are formed: the symmetrical tris-chelate or distorted bis-chelate? Explain the reasons for this occurrence.              |
| 4. | Provide equations for all reactions that occurred in your calorimeter.                                                                                                 |
| 5. | Provide definitions for the following terms.  a. coordination compound  b. ligand                                                                                      |
|    | c. monodentate,                                                                                                                                                        |
|    | d. bidentate                                                                                                                                                           |

e. chelating ligand

f. coordination number

| Name | Section | Date |  |
|------|---------|------|--|
|      |         |      |  |

#### Suggested Answers to Questions/Problems

- 1. How many molecules of ethylenediamine react with each molecule of  $[Ni(H_2O)_6]^{2^+}$  and with  $[Cu(H_2O)_6]^{2^+}$ ? Explain your conclusion.
  - 3 molecules react with  $[Ni(H_2O)_6]^{2+}$  since there are six available bonding sites and during each step, one molecule of the bidentate ethylenediamine ligand replaces two water molecules.
  - 2 molecules react with  $[Cu(H_2O)_6]^{2+}$  since two of the six  $Cu-H_2O$  bonds are longer than the other four, and if these two water molecules are not replaced, the copper complex can retain the preferred distorted geometry.
- 2. In your experimental trials, how did you conclude that no additional bonding of ethylenediamine to aqueous  $[Ni(H_2O)_6]^{2+}$  and  $[Cu(H_2O)_6]^{2+}$  had occurred?
  - When there was only a small increase in temperature that could be attributed to the heat of dilution of ethylenediamine.
- 3. Which of the two possible complexes of copper are formed: the symmetrical tris-chelate or distorted bis-chelate? Explain the reasons for this occurrence.
  - The symmetrical tris-chelate complex is not formed since the electronic factors force the distorted, bis-chelate geometry.
- 4. Provide equations for all reactions that occurred in your calorimeter.

$$\begin{split} & [\text{Ni}(\text{H}_2\text{O})_6]^{2^+}{}_{(aq)} + \text{en}_{(aq)} \quad \rightarrow \quad [\text{Ni}(\text{H}_2\text{O})_4\,(\text{en})]^{2^+}{}_{(aq)} + 2 \text{ H}_2\text{O} \\ & [\text{Ni}(\text{H}_2\text{O})_4\,(\text{en})]^{2^+}{}_{(aq)} + \text{en}_{(aq)} \quad \rightarrow \quad [\text{Ni}(\text{H}_2\text{O})_2\,(\text{en})_2]^{2^+}{}_{(aq)} + 2 \text{ H}_2\text{O} \\ & [\text{Ni}(\text{H}_2\text{O})_2\,(\text{en})_2]^{2^+}{}_{(aq)} + \text{en}_{(aq)} \quad \rightarrow \quad [\text{Ni}(\text{en})_3]^{2^+}{}_{(aq)} + 2 \text{ H}_2\text{O} \\ & [\text{Cu}(\text{H}_2\text{O})_6]^{2^+}{}_{(aq)} + \text{en}_{(aq)} \quad \rightarrow \quad [\text{Cu}(\text{H}_2\text{O})_4\,(\text{en})]^{2^+}{}_{(aq)} + 2 \text{ H}_2\text{O} \\ & [\text{Cu}(\text{H}_2\text{O})_4\,(\text{en})]^{2^+}{}_{(aq)} + \text{en}_{(aq)} \quad \rightarrow \quad [\text{Cu}(\text{H}_2\text{O})_2\,(\text{en})_2]^{2^+}{}_{(aq)} + 2 \text{ H}_2\text{O} \end{split}$$

## Suggested Answers to Questions/Problems (page 2)

5. Provide definitions for the following terms.

a. coordination compound: any species involving the formation of coordinate covalent bonds

of ligands to a metal center.

b. ligand: a species that is capable of donating one or more electron pairs

to a central metal atom or ion.

c. monodentate: a ligand that has only one pair of electrons that it can donate.

d. bidentate ligand: a ligand that can donate two electron pairs.

e. chelating ligand: a ligand capable of donating two or more electron pairs and

facilitating the formation of a ring upon its bonding to a metal

center.

f. coordination number: the number of coordination sites that a metal center can provide

for ligands to attach to.

## Tips and Traps

- 1. It is helpful to equip the inner beaker with a handle to help the student to remove the beaker for cooling.
- 2. Students have to make sure that the initial temperatures for each step are within 0.1°C. All the solutions used in this experiment should be kept at the same temperature in a constant temperature bath.
- 3. An automatic dispenser should be used for ethylenediamine to minimize the possibility of spills.

Sample *MicroLAB* Main Screen showing the program and a data set for an exothermic process.



## Sample Data

# Reaction of [Ni(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> with ethylenediamine

|                                                                                     | Step1      | Step 2      | Step 3 | Step 4 |  |  |  |
|-------------------------------------------------------------------------------------|------------|-------------|--------|--------|--|--|--|
| Initial temperature (°C)                                                            | 22.78      | 22.84       | 22.73  | 22.77  |  |  |  |
| Final temperature (°C)                                                              | 23.88      | 23.91       | 23.65  | 22.92  |  |  |  |
|                                                                                     |            |             |        |        |  |  |  |
| Reaction of [Cu(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> with ethylenediamine |            |             |        |        |  |  |  |
|                                                                                     | Step1      | Step 2      | Step 3 | Step 4 |  |  |  |
| Initial temperature (°C)                                                            | 22.84      | 22.84       | 22.82  |        |  |  |  |
| Final temperature (°C)                                                              | 24.29      | 24.23       | 23.05  |        |  |  |  |
| Concentration of ethylenedia                                                        | mina 1     | .5 <i>M</i> |        |        |  |  |  |
| Concentration of emplementa                                                         | .1111110 1 | .J 1V1      |        |        |  |  |  |

Volume of ethylenediamine in each step 5.0 ml

Concentration of  $[Cu(H_2O)_6]^{2+}$  or  $[Ni(H_2O)_6]^{2+}$  0.15 M

Volume of  $[Cu(H_2O)_6]^{2+}$  or  $[Ni(H_2O)_6]^{2+}$  50.0 ml

#### Sample Data (page 2)

#### Calculations

1. Calculate the number of moles of ethylenediamine in each 5 ml portion.

$$1.5 M \times 0.0050 L = 0.0075$$
 mole per step

2. Calculate the number of moles of each metal complex.

$$0.15 M \times 0.050 L = 0.0075 mole$$

3. For each step, calculate the heat,  $q_n$ , using 3.8 J/(g °C) and 1.1 g/ml for the specific heat and density of the solution, respectively, and 30 J/ °C for the heat capacity of the calorimeter.

$$q_n = (3.8 \text{ J/g}^{\circ}\text{C}) \text{ x } (1.1 \text{ g/ml}) \text{ x } (\text{ml soln}) \text{ x } (t_i - t_f) + (30 \text{ J/}^{\circ}\text{C}) \text{ x } (t_i - t_f)$$

Provide a sample calculation and record all of your results in the space below.

$$q_1 = (3.8 \text{ J/g}^{\circ} \text{C}) \times (1.1 \text{ g/ml}) \times (55 \text{ ml}) \times (1.10^{\circ} \text{C}) + (30 \text{ J/}^{\circ} \text{C}) \times (1.10^{\circ} \text{C})$$
$$= -2.9 \times 10^2 \text{ J}$$

4. For each step, calculate the enthalpy change,  $\Delta H_n$ , from q and the moles of "en" used in that step. Provide a sample calculation and record your results in the table below.

For the nickel complex:  $\Delta H_1 = q_1/n = -2.9x10^2 \text{ J/0.0075 mol} = -38 \text{ kJ/mol}$ 

| Complex                                            | $\Delta H_1$ | $\Delta \mathrm{H}_2$ | $\Delta H_3$ | $\Delta H_4$ |
|----------------------------------------------------|--------------|-----------------------|--------------|--------------|
| $[\mathrm{Ni(H}_2\mathrm{O})_6]^{2^+}$             | - 38         | - 40                  | - 37         | - 6          |
| [Cu(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> | - 50         | - 52                  | - 9          |              |

## Laboratory Preparation (per student station)

## Equipment

- two 600 ml beaker
- 400 ml beaker
- 250 ml beaker
- 100 ml beaker
- 50 ml graduated cylinder
- · glass stirring rod
- insulated cover (for 100 ml beaker)
- 10 cm test tube, stopper and test tube block
- temperature probe
- homemade wire handle to withdraw 100 ml beaker

## **Supplies**

towel

#### Chemicals

Exact quantities needed are listed below. A minimum 50% excess is recommended.

- 1.5 M ethylenediamine (35 ml)
- $0.15 M \text{ NiCl}_2 \cdot 6\text{H}_2\text{O} (50 \text{ ml})$
- $0.15 M \text{ CuSO}_4.6\text{H}_2\text{O} (50 \text{ ml})$

#### Safety and Disposal

- dispose of the wastes into specially marked containers in the fumehood.
- ethylenediamine has to be handled with extreme care.